Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11.

نویسندگان

  • C Grzeszik
  • M Lübbers
  • M Reh
  • H G Schlegel
چکیده

The dissociation of the soluble NAD-reducing hydrogenase of Rhodococcus opacus MR11 into two dimeric proteins with different catalytic activities and cofactor composition is unique among the NAD-reducing hydrogenases studied so far. The genes of the soluble hydrogenase were localized on a 7.4 kbp Asnl fragment of the linear plasmid pHG201 via heterologous hybridization. Analysis of the nucleotide sequence of this fragment revealed the seven open reading frames ORF1, hoxF, -U, -Y, -H, -W and ORF7. The six latter ORFs belong to the gene cluster of the soluble hydrogenase. Their gene products are highly homologous to those of the NAD-reducing enzyme of Alcaligenes eutrophus H16. The genes hoxF, -U, -Y and -H encode the subunits alpha, gamma, delta and beta, respectively. The gene hoxW encodes a putative protease, which may be essential for C-terminal processing of the beta subunit. Finally, ORF7 encodes a protein which has similarities to cAMP- and cGMP-binding protein kinases, but its function is not known. ORF1, which lies upstream of the hydrogenase gene cluster, encodes a putative transposase found in IS elements of other bacteria. Northern hybridizations and primer extensions using total RNA of autotrophically and heterotrophically grown cells of R. opacus MR11 indicated that the hydrogenase genes are under control of a delta 70-like promoter located at the right end of ORF1 and are even transcribed under heterotrophic conditions at a low level. Furthermore, this promoter was shown to be active in the recombinant Escherichia coli strain LHY1 harbouring the 7.4 kbp Asnl fragment, resulting in overexpression of the hydrogenase genes. Although all four subunits of the soluble hydrogenase were shown via Western immunoblots to be synthesized in E. coli, no active enzyme was detectable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools

BACKGROUND The Gram-positive actinomycete Rhodococcus opacus is widely studied for its innate ability to store large amounts of carbon in the form of triacylglycerol (TAG). Several groups have demonstrated that R. opacus PD630 is capable of storing anywhere from 50 to 76% of its cell dry weight as TAG. While numerous studies have focused on phenomenological aspects of this process, few have sou...

متن کامل

Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production

BACKGROUND There has been a great deal of interest in fuel productions from lignocellulosic biomass to minimize the conflict between food and fuel use. The bioconversion of xylose, which is the second most abundant sugar present after glucose in lignocellulosic biomass, is important for the development of cost effective bioprocesses to fuels. Rhodococcus opacus PD630, an oleaginous bacterium, a...

متن کامل

Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.

Bacterial strain M213 was isolated from a fuel oil-contaminated soil in Idaho, USA, by growth on naphthalene as a sole source of carbon, and was identified as Rhodococcus opacus M213 by 16S rDNA sequence analysis and growth on substrates characteristic of this species. M213 was screened for growth on a variety of aromatic hydrocarbons, and growth was observed only on simple 1 and 2 ring compoun...

متن کامل

Engineering of a xylose metabolic pathway in Rhodococcus strains.

The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid ac...

متن کامل

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 143 ( Pt 4)  شماره 

صفحات  -

تاریخ انتشار 1997